Chronic mild stress alters circadian expressions of molecular clock genes in the liver.

نویسندگان

  • Kei Takahashi
  • Tetsuya Yamada
  • Sohei Tsukita
  • Keizo Kaneko
  • Yuta Shirai
  • Yuichiro Munakata
  • Yasushi Ishigaki
  • Junta Imai
  • Kenji Uno
  • Yutaka Hasegawa
  • Shojiro Sawada
  • Yoshitomo Oka
  • Hideki Katagiri
چکیده

Chronic stress is well known to affect metabolic regulation. However, molecular mechanisms interconnecting stress response systems and metabolic regulations have yet to be elucidated. Various physiological processes, including glucose/lipid metabolism, are regulated by the circadian clock, and core clock gene dysregulation reportedly leads to metabolic disorders. Glucocorticoids, acting as end-effectors of the hypothalamus-pituitary-adrenal (HPA) axis, entrain the circadian rhythms of peripheral organs, including the liver, by phase-shifting core clock gene expressions. Therefore, we examined whether chronic stress affects circadian expressions of core clock genes and metabolism-related genes in the liver using the chronic mild stress (CMS) procedure. In BALB/c mice, CMS elevated and phase-shifted serum corticosterone levels, indicating overactivation of the HPA axis. The rhythmic expressions of core clock genes, e.g., Clock, Npas2, Bmal1, Per1, and Cry1, were altered in the liver while being completely preserved in the hypothalamic suprachiasmatic nuculeus (SCN), suggesting that the SCN is not involved in alterations in hepatic core clock gene expressions. In addition, circadian patterns of glucose and lipid metabolism-related genes, e.g., peroxisome proliferator activated receptor (Ppar) α, Pparγ-1, Pparγ-coactivator-1α, and phosphoenolepyruvate carboxykinase, were also disturbed by CMS. In contrast, in C57BL/6 mice, the same CMS procedure altered neither serum corticosterone levels nor rhythmic expressions of hepatic core clock genes and metabolism-related genes. Thus, chronic stress can interfere with the circadian expressions of both core clock genes and metabolism-related genes in the liver possibly involving HPA axis overactivation. This mechanism might contribute to metabolic disorders in stressful modern societies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chronic Ethanol Consumption Disrupts the Core Molecular Clock and Diurnal Rhythms of Metabolic Genes in the Liver without Affecting the Suprachiasmatic Nucleus

Chronic ethanol consumption disrupts several metabolic pathways including β-oxidation and lipid biosynthesis, facilitating the development of alcoholic fatty liver disease. Many of these same metabolic pathways are directly regulated by cell autonomous circadian clocks, and recent studies suggest that disruption of daily rhythms in metabolism contributes to multiple common cardiometabolic disea...

متن کامل

Allantoin improves methionine-choline deficient diet-induced nonalcoholic steatohepatitis in mice through involvement in endoplasmic reticulum stress and hepatocytes apoptosis-related genes expressions

Objective(s): Non-alcoholic steatohepatitis (NASH) is defined by steatosis and inflammation in the hepatocytes, which can progress to cirrhosis and possibly hepatocellular carcinoma. However, current treatments are not entirely effective. Allantoin is one of the principal compounds in many plants and an imidazoline I receptor agonist as well. Allantoin has positive eff...

متن کامل

Ketogenic diet and fasting induce the expression of cold-inducible RNA-binding protein with time-dependent hypothermia in the mouse liver☆

Cold-inducible RNA-binding protein (CIRBP) induced by cold stress modulates the molecular circadian clock in vitro. The present study examines the effect of a ketogenic diet (KD) and fasting on Cirbp expression in the mouse liver. Chronic KD administration induced time-dependent Cirbp expression with hypothermia in mice. The circadian expression of clock genes such as Bmal1 and Clock was phase-...

متن کامل

Gene regulation network fitting of genes involved in the pathophysiology of fatty liver in the mice by promoter mining

Background and Aim: Non-Alcoholic Fatty Liver Disease (NAFLD) is the major cause of chronic liver disease in developed countries. In this study, we identified the most important transcription factors and biological mechanisms affecting the incidence of fatty liver disease using the promoter region data mining. Materials and Methods In this study, at first, the marker genes associated with this...

متن کامل

Effects of light and food schedules on liver and tumor molecular clocks in mice.

BACKGROUND Disrupted circadian coordination accelerates malignant growth, but the molecular mechanism is unclear. METHODS Healthy or Glasgow osteosarcoma-bearing mice (n = 162) were synchronized with light and darkness over 2-3 weeks, submitted to an 8-hour advance onset of light every 2 days (chronic jet lag) to disrupt circadian coordination, or submitted to chronic jet lag and meal timing ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Endocrinology and metabolism

دوره 304 3  شماره 

صفحات  -

تاریخ انتشار 2013